When was the Higgs particle discovered

September 17, 2020


The LHC s CMS detector


Potential Higgs to photon decay event as seen by the CMS experiment at the LHCWhen last we checked in on the hunt for the Higgs, physicists weren’t yet ready to call the deal done. They were only willing to say that they had discovered a new particle—some sort of boson—and that this new boson was “Higgs-like.” Their reticence hinged on the measurement of the new particle’s spin, a fundamental quality that, for bosons, must take an integer value such as 0, 1 or 2. Both in July, when the proto-Higgs was first announced, and in November, when scientists released additional data analysis, they didn’t have enough data to definitively say that the boson had a spin of zero, which a Higgs must have.

That uncertainty has now melted away. This week, physicists gathered in Moriond, Italy announced that additional data from the Large Hadron Collider’s 2012 data run now conclusively show that the new boson has a spin of zero, and is thus a Higgs boson.

The Standard Model of particle physics—the extremely successful set of theories that physicists use to understand the universe but which most scientists believe is incomplete—predicts that the Higgs boson should behave in a particular way. Once we know its mass (which we do), the Standard Model precisely determines with what frequency the Higgs should change into other subatomic particles (a Higgs lasts for only a fraction of a second before decaying into other particles; these particles are what scientists measure at the LHC). Because scientists want to deeply probe the Standard Model to see where it fails—thus pointing the way to a new and deeper understanding of physical law—they have been closely monitoring just how the Higgs decays.

Early results indicated that the Higgs-like particle was behaving as the Standard Model predicts—with one intriguing exception. The Higgs seemed to be decaying into two photons about twice as often as it should. Could the discrepancy open a much-anticipated crack in the Standard Model?

Alas, no. New results presented at the Moriond Conference show that the apparent excess in photons was likely a statistical fluke. The Higgs appears to be a boring old Standard Model Higgs boson after all. Physicists hoping to find problems with the Standard Model will have to wait until the data from the next LHC run—which, because of a planned two-year shutdown to upgrade the machine, won’t begin before 2015.

Source: blogs.scientificamerican.com
INTERESTING VIDEO
The Higgs boson: how it was discovered and what it all means
The Higgs boson: how it was discovered and what it all means
Discovery of the Higgs Boson, the God Particle, and its
Discovery of the Higgs Boson, the God Particle, and its ...
The Higgs Particle: What Is It and How Has It Been Discovered?
The Higgs Particle: What Is It and How Has It Been Discovered?

INTERESTING FACTS
avatar
If or when the Higgs particle is discovered, what practical applications could we expect from this discovery? | Yahoo Answers

I expect it will be a long time before there will be any practical applications for this, but the more we learn of the structures and properties of matter, the better we can later know how to manipulate it for the needs we have,

Share this Post